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Abstract 

Anisotropy is present in the angular distributions of neutrons departing from a 

nuclear scattering event.  This anisotropy cannot be defined in a closed-form solution, as 

in the Klein-Nishina distribution for gamma rays following scattering events, nor is the 

degree and behavior of anisotropy only dependent on the incident energy of the particle.  

In fact, for neutrons leaving a scattering event, the anisotropic behavior of the angular 

distribution is dependent on the incident energy of the neutron, the type of scatter 

being elastic or inelastic along with the inelastic level, and the species struck. 

The underlying question is, if anisotropic behavior is worth the computational 

cost to be included in certain simulations, and if so, what level of precision is effected by 

the inclusion of anisotropic scatter.   

 A Watt spectrum of U235 fission neutrons was examined as it collided with species 

in a nitrogen-oxygen atmosphere.  In a stochastic manner, 108 collision samples were 

taken, utilizing cross section-based weighting for random sampling of collision types and 

cross section weighting along with concentration weighting to determine the species 

struck.  The collective anisotropy of the resultant angular distribution was apparent, 

with a definite average forward bias across the spectrum and a bias toward scattering 

angles less than 30 degrees. 
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 Additionally, when lower energies are eliminated from consideration, the forward 

bias increases.  This leads to the conclusion that, on average, the higher the energy, the 

greater the apparent magnitude of the forward bias of the anisotropic scatter. 

 Using 1-D slab geometry, two studies were conducted exploring the relative effect 

of anisotropic scatter as compared to isotropic scatter in the center of mass reference 

frame.  The maximum relative error of 0.24% was observed in the energy dimension and 

0.23% in the time dimension.  This can serve as a first approximation for more complex 

problem geometries and more robust scatter mechanics.  In short, if precision is required 

past the second decimal place in long-distance high-altitude transport utilizing isotropic 

scatter in the center of mass reference frame, anisotropy in the center of mass reference 

frame deserves consideration. 
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THE EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC 

NEUTRON TRANSPORT 

I. Introduction 

In general, the response of any object or medium to neutron radiation depends on 

the properties of the object and energy of that particle.  Any system’s response also 

depends on the angle of incidence of the neutron.  Combining the energy and angle of 

incidence, in the rest frame of the object or system of concern, dictates the response the 

system will have to that incident neutron.  This object of concern might be a sensor of 

some type or particles in the medium subjected to or exposed to the neutron flux. 

The response of a system can change based on the quantity of neutrons, not just 

the overall energy deposited by a neutron flux.  More plainly, a small number of high 

energy neutrons as compared to a large number of low energy neutrons will generate 

different responses, even though the sum of energy might be the same. 

Any model for this type of neutron transport will incorporate an energy range of 

interest, times of arrival of neutrons, and flux or fluence.  Additionally, based on the 

problem parameters and available input data, a given model will have requirements for 

precision and accuracy.  Some applications may tolerate large errors and others may 

need extremely precise calculations.  This precision and accuracy requirement drives the 

level of fidelity required within a model. 
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Application 

 The Air Force Technical Applications Center (AFTAC) monitors compliance 

with nuclear test ban treaties. Reliability of the U.S. Nuclear-detonation Detection 

System (USNDS) requires observing multiple phenomenologies, including neutron 

radiation. AFIT is developing a new, more-capable Monte Carlo neutron radiation 

transport simulator in support of these efforts. 

HASTE-N 

High-Altitude and Space Transport Estimator – Neutrons or HASTE-N is a 

software package being developed by Dr. Kirk Mathews.  HASTE-N, in general, is 

designed to simulate high fidelity, high altitude neutron transport using stochastic 

Monte-Carlo methods in an effort to generate accurate modeling for specific types of 

low-density medium transport problems. [1] 

The cornerstone of HASTE-N, and why it is different than general purpose 

stochastic transport codes, is based on the inclusion of physical processes that are 

normally not included in neutral particle transport.  One key process is the independent 

motion of the material in the problem, including the neutron source, the transport 

medium, and the object of interest itself.  Typically these are all stationary, which is not 

the case in high altitudes with detectors in orbit.  Another key process is the influence 

of gravity on the neutron.  For most neutral particle transport problems in short time 
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scales or over small distances, gravity is not included.  Finally, the thermal motion of 

atoms in the transport medium is considered in order to more accurately predict the 

energy of a neutron following a scatter. [2] 

The HASTE-N code is also developed to take advantage of some of the special 

features of the problem set of long distance low-density medium transport, 

predominantly long distances between collisions, changing medium density, and 

gravitational effects.  Properties of low density air as the medium and known 

gravitational parameters allow optimization of the code for tasks like cross-section 

lookup, mean free path calculations, root-solving problems. 

Additionally, HASTE-N allows the user to toggle the inclusion of different 

physical processes independently.  This permits individual processes to be examined for 

verification purposes both during development and by end users.  An individual process 

can then be studied for its net effect on a given problem.  The added benefit of this 

feature is the ability to trade fidelity for execution speed when required. 

HASTE-N-TE 

 HASTE-N Test Environment (HASTE-N-TE) is a software package developed by 

Captain Whitman Daily to provide a simulation environment for the testing of HASTE-

N modules separate from the complexity of the overall HASTE-N software package.  



4 

 

For this reason, HASTE-N-TE functions as the environment used to test the modules 

discussed in this document. 

Development Focus 

The underlying question is if anisotropic behavior is worth the computational 

cost to be included in certain HASTE-N problem runs, and if so, what level of precision 

is effected by the inclusion of anisotropic scatter.  In order to address this question, first 

anisotropic scatter was implemented, then verified, and finally, the measurement of the 

net effect on an overall simulation. 

The focus of this document is on the development of a small part of the HASTE-

N software package as a whole, namely the modules covering scatter mechanics and 

cross-section look ups.  The effort described here was to implement and verify these 

portions of HASTE-N individually to contribute to the verification of the software 

package as a whole. 

The first module covers the anisotropic scatter of neutrons following a scattering 

interaction with a species of nuclei in the air.  In general, implementation of anisotropic 

behavior consists of interpreting and interpolating Legendre polynomial coefficients from 

ENDF files, constructing probability density functions and cumulative distribution 

functions from interpolated coefficients, and evaluating the angular distribution to 

determine scattering angle. 
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The second module is focused on the ingestion and use of cross-section data from 

ENDF file extractions.  These cross sections along with atmospheric composition data 

are used by HASTE-N to determine the species struck, mean free path length, the type 

of interaction, and the inelastic level of scattering events.  Additionally, because cross-

sections are used so frequently during calculations of each particle history, emphasis was 

placed on execution speed of cross-section look ups. 

Verification 

Following the implementation and testing of the anisotropic scatter and cross-

section modules, a stripped down version of HASTE-N referred to as HASTE-N Test 

Environment (HASTE-N-TE) developed by Capt. Whitman Daily was used to verify 

and test the behavior of the two modules.  Additionally, parameter studies were 

conducted to observe the effect of anisotropy on long distance high altitude transport 

problems as simulated by HASTE-N-TE. 
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II. Theory 

The Anisotropic Scatter of Neutrons 

 Following collision with a nucleus, an elastic or inelastic collision, the neutron 

departs the nucleus with a given deflection angle from the initial direction of travel.  

This angular distribution is uniform about the initial direction of travel of the neutron, 

but the deviation from that initial direction is drawn from a probability distribution 

function and varies from 0 to π radians (or 0 to 180 degrees). 

 Consider a neutron, initially travelling in direction ˆ v v¢ ¢ ¢W = 
, that collides with 

a nucleus and leaves the collision in a new direction Ŵ . The cosine of the deflection 

angle for the collision is usually denoted as 0
ˆ ˆm ¢= W ⋅W . This is the cosine of a polar 

angle for spherical coordinates with the pole aligned with ˆ ¢W . The other spherical 

coordinate angle, representing rotation around that axis is conventionally denoted as 0w

. For isotropic scattering, 0m  is be uniformly distributed between -1 (backscatter) and 

+1 (forward scatter), and 0w  is uniformly distributed between p-  and p . The 

subscript zero is dropped for conciseness of notation in the rest of this thesis. 

 The classical mechanics solution for the scattering collision of two spheres is that 

the distribution in isotropic in the center of mass (CM) frame. Thus, the probability 

density function (PDF) is 
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Using this classical approximation, if the mass of the nucleus is much greater than that 

of a neutron, such as for neutron scattering in Uranium, it suffices for many applications 

to approximate the angular distribution as isotropic in the lab frame. However, in 

scattering a neutron from an atom of air, the mass ratio is from about 14:1 for nitrogen-

14 to about 18:1 for oxygen 18. In these cases, isotropic in the lab frame is not an 

acceptable approximation to isotropic scatter in the CM frame. The relation between 

the scattering cosine in the lab frame and in the CM frame for elastic scatter, is simply 

 
2 2 21 1lab lab lab

CM

A

A

m
m

m m- + + - + +
= , [2.2] 

where A is the ratio of the mass of the nucleus to that of the neutron. For elastic scatter 

with 1A> , the PDF in the lab frame is  

 ( ) ( )

2
2 2

2 2

1

2 1

lab lab

lab CM cm

lab

f f
A

A A
m m

m m

m

æ ö÷ç + - + + ÷ççè ø

- + +
=

÷
. [2.3] 

A Cartesian plot of the PDF for isotropic scatter, for A=14 and A=18, is presented in 

figure 1. 
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Figure 1: Probability density function for isotropic scatter in the lab frame, plotted in Cartesian 

coordinates.  Curves are displayed for A=14, A=18, and A=∞. 

The steeper curve (blue) is the PDF for the less massive atom, 14A = . The red 

curve is for 18A =  . The dashed line is the PDF if scattering were isotropic in the lab 

frame, i.e., for A = ¥ . It is easier to visualize the extent of the anisotropy using a plot 

of the surface of the distribution function ( )( ),f m q w . Figure 2 shows this function for a 

neutron that was initially moving directly to the right. Thus, the pole on the right of 

the not-quite-sphere is forward scatter and the one on the left is backscatter. 
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Figure 2: A plot of the surface of the distribution function f (μ(q),w) for a neutron incident from 

the left moving right.  Note the plot is rotationally symmetric about the direction of travel of the 

incident neutron. 

 However, these plots are always rotationally symmetric around the axis, so one 

usually finds plots that are a cross-section of this shape where it intersects with a plane 

through the origin perpendicular to the line of sight. Such a plot is a polar parametric 

plot with m  as the independent variable, ( )f m  as the radius and angular coordinate 

( )arctanq m= . Figure 3 presents the distributions from figure 2 in this way. Forward 
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scatter is for 1m = , whence 0q = , which is to the right in figure 3. Sideways scatter is 

for 0m = , whence / 2q p= . This plot makes it easy to see the extent of anisotropy. 

Remember that this is a plot of the PDF of m , not the PDF of q . 

 

Figure 3: A polar parametric plot with μ as the independent variable, f (μ) as the radius and 

angular coordinate q = arctan(μ). Curves are displayed for A=14, A=18, and A=∞. 

This type of angular distribution is commonly encountered in the content of 

photons deflecting off free electrons, resulting in the Klein-Nishina formula.  In the case 
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of photons colliding with electrons, this distribution is only dependent on the initial 

energy and is well-defined in a closed-form equation. 

The remainder of this thesis examines the extent to which scattering in the CM 

frame is not actually isotropic (due to quantum-mechanical effects). In all subsequent 

formulas and plots, m  denotes the scattering deflection cosine in the center of mass 

frame. 

The actual anisotropic angular distribution of neutrons (in the CM frame) 

following a collision with a nucleus, is dependent on the initial energy of the collision in 

the center of mass, the species of nucleus struck (both atomic number and weight), and 

the excited level of the nucleus as a result of an inelastic collision.  Unfortunately, there 

is no known closed form solution for this angular distribution.  Experimentally, these 

distributions are measured. ENDF presents coefficients for truncated Legendre 

polynomial series that are used to approximate the distribution functions in the form 

 ( ) ( )
0

2 1

2

n

j j
j

j
f Pm s m

=

+
= å . [2.4] 

Legendre Polynomials 

Legendre polynomials, in general, are azimuthally symmetric solutions to 

Legendre’s differential equation, 
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where ( )nP x  is the nth Legendre polynomial.  Solving the above ordinary differential 

equation is not related to the approximation of an angular distribution function, but the 

fact that the polynomial solutions to the ODE are orthogonal to each other makes these 

polynomials ideal for the estimation of a function that does not have a closed form; the 

use of additional polynomials from the generated series allows achievement of the 

desired precision of the estimator function. 

The Legendre polynomials from n=0 to n=5 are as follows: 
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  [2.6] 

The polynomials from equation [2.6] are shown graphically in Figure 4 below. 



13 

 

 

Figure 4: Graph of the First Five Legendre Polynomials.  The polynomials are shown on 

the interval ranging (-1,1) and are shown absent any weighting coefficients. 

(http://en.wikipedia.org/wiki/Legendre_polynomials)    

Legendre Polynomial Generation 

The Legendre polynomials are typically defined and generated recursively using 

Bonnet’s recursion formula: 
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Though able to be generated through recursion and expanded into single 

polynomials as in equation [2.6], the polynomials can be evaluated during the recursion, 

resulting in less possibility of computational error due to repeated arithmetic operations. 

Using Legendre Polynomials 

These polynomials are used here as an estimator of f( )m , the probability density 

function (PDF) of the cosine of the scattering angle of a neutron and nucleus collision.  

The polynomials, individually weighted and summed together, form the function 

estimator, ( )f m . [3] 

 ( ) 0

( ) 1 1
 = 

0

n

j j
j

a P
f

else

m m
m =

ìïïï - £ £ïíïïïïî

å . [2.8] 

where  

 
2 1

2j j
j

a s
æ ö+ ÷ç ÷= ç ÷ç ÷çè ø

 [2.9] 

and the js  coefficients are tabulated in ENDF. To save execution time in the Monte 

Carlo code, the coefficients ja  are computed and stored in arrays as the coefficients js  

are read in from the ENDF files.  

The factor 2 1

2

j+  arises in the orthogonalization of the Legendre polynomials: 
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 A PDF is not only normalized to integrate to 1, but also must be non-negative 

everywhere. The former is guaranteed for 1
0 2

a = ; the latter depends on the values of 

the remaining coefficients. Presuming non-negativity, it can be integrated to produce 

the CDF,  

 ( ) ( )
1

F f d
m

m m m
-

¢ ¢= ò , [2.11] 

which must be monotone non-decreasing.    

Cumulative Distribution Function Evaluation 

In order to retrieve a useful value from the PDF in equation [2.8], as in the 

chance that a neutron scatters in a specific direction range, the PDF must be integrated 

for use as a CDF.  The CDF is 
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 where the coefficients jb  are given by 
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with 

 
2 1

j
j

a
c

j
=

+
  [2.14] 

Like the PDF, the CDF can be generated and evaluated recursively. This is done for 

two reasons, the first for the minimizing of arithmetic error propagation and the second 

for an increase in execution speed. 

Neutron Cross Sections 

In general, a cross section governs the probability that a given interaction can 

occur.  In the context here, the probability that an incident neutron will interact with a 

nucleus, sometimes referred to as total cross section for interaction, totals .  Several 

interactions of a neutron with a nucleus can occur, including absorption, elastic scatter 

(n,n), inelastic scatter (n,n’), and other less common types.  

Cross Section for Air 

Cross section data is readily available for dry air at sea level at standard 

temperature and pressure and is well-supported by experimental data.  For use in 

HASTE-N, this data would not accurately depict the problem, since the software is 

designed to define the atmosphere’s composition for each problem.  A more consistent 
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approach is to use the defined atmosphere to construct a total cross section for the 

defined atmosphere. 

For example, for total cross section for interaction for air, ( )total airs , 
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 [2.15] 

where l is the total number of species in the atmosphere, n is the number of elements in 

the atmosphere, im  is the number of isotopes of element i, ,isotope air
kf  is the atmospheric 

fraction of isotope k, and so on. 

Based upon how the atmospheric concentrations are specified, ( )total airs  can be 

constructed in two ways, both displayed in equation [2.15].  If each species to be 

considered in the atmosphere (elements or isotopes) is listed along with the fraction of 

the air it comprises, the cross sections of each species, weighted by their atmospheric 

fraction (fk) are summed to produce the total cross section.  If the atmosphere is instead 

further specified by the fraction of component elements (fi), along with the fraction of 

occurrence of isotopes of that element (fj), the cross sections of each species is weighted 

by both the elemental composition of the atmosphere along with the natural occurrence 

of the isotopes of that element, then summed to produce the total cross section. 



18 

 

This total cross section for interaction for air can then be used for mean free path 

calculations within HASTE-N 

The Watt Spectrum 

To define any fission spectrum in the Evaluated Nuclear Data Library, ENDL [4], 

the Watt spectrum can be used, 

 ( ) ( )W , , e sinhaEa b E C bE-=   [2.16] 

where E is the energy of the emitted neutron and the normalization constant, C, is 

obtained by integration of W: 
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The coefficients a and b are different for each individual isotope as well as slight 

variances based on incident neutron energy. 

To approximate the neutron fission spectrum for U235 as caused by neutrons in 

the MeV range, 10.7 MeVa -=  and 11.0 MeVb -= . [5] This is not a perfect 

approximation for the produced neutron spectrum of U235, but will be used as a 

reasonable baseline for the purposes of parameter studies in this document.  Further 
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details on use of the Watt spectra for fission spectra can be found in UCRL-TR-203351. 

[4] (Note: That report contains an incorrect formula for the normalization constant.) 
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III. Methodology 

 Since HASTE-N is being developed in Fortran, the same development 

environment was selected for implementation of the scatter angle distribution and cross 

section modules.  The functions and subroutines were written to interface with the 

existing development effort, and utilized existing routines from other HASTE-N 

modules.  Microsoft Visual Studio 2013 along with the Intel Math Kernel Library was 

used to develop, debug, and test the modules. 

Angular Distribution Implementation 

Since the departure angle of a neutron following a scatter event is dependent on 

not just the species of nuclei struck and the incident energy of the neutron in the center 

of mass frame, but also on the type of scatter (elastic or inelastic), a large data set of 

Legendre coefficients is required for each isotope.  For each isotope, the ENDF database 

has varying energy levels for elastic collisions as well as varying energy levels for the 

first thirty inelastic levels.  One of the design parameters of this module was not to use 

a proprietary data file format; files directly from ENDF can be read by the software 

without alteration, allowing HASTE-N to be updated simply by adding newer ENDF 

files as they are released. 
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Legendre Coefficient Data 

Dynamically sized, multidimensional data structures were constructed to hold the 

Legendre coefficients.  Conceptually, the data is organized in a four dimensional matrix 

by isotope, energy, inelastic level, and the Legendre coefficient subscript.  At the time of 

ingestion of the ENDF files, every one of those four dimensions must be determined 

dynamically. 

The number of isotopes is based on the complexity of the atmosphere for a given 

problem.  Elemental composition of the atmosphere as well as isotopes of each element 

are considered, based on the level of detail required for the atmosphere’s composition in 

a specific problem.  As a reasonable first approximation, the initial atmospheric 

composition was selected to contain the five most common species, in order of 

commonality: N14, N15, O16, O18, and O17.  The fraction of each element can be specified 

as well as the fraction of each isomer of each element in problem parameters. 

In a given ENDF file containing Legendre Coefficients, coefficients for multiple 

incident energies are listed.  The number of energies listed is primarily dependent on 

how much data was gathered experimentally. [6] For elastic collisions, the listed incident 

energies are from as low as ~ 51.0 10-´  eV and can range into the GeV level depending 

on the measurements recorded.  For the inelastic level data, the lowest energy listed is 

the excitation energy for that inelastic excitation level, or the Q.  For the purposes of 
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this software, the incident energy data extends no higher than 14.5 MeV, but this can 

be raised, provided the provided ENDF data extends to the desired energy level bound. 

ENDF provides data for elastic collisions and for the first thirty inelastic levels of 

most isotopes, then a continuum for the levels above thirty.  Fortunately, with the 

upper bound for energy set at 14.5 MeV, only the inelastic levels with Q values less than 

the upper energy bound need be considered.  The software dynamically determines the 

levels required for each isotope based on the specified maximum incident energy. 

The four-dimensional Legendre data structure contains the Legendre coefficients 

themselves.  Based on the experimental data collected and the degree of anisotropy 

present for a given isotope, energy, and inelastic level combination, anywhere from 2 to 

32 coefficients may be provided for energies below the upper energy bound of 14.5 MeV. 

[6] More than 32 coefficients may be provided for higher energies, and the software can 

easily be modified for this application if desired.  It should be noted that larger 

magnitudes and greater numbers of coefficients indicate a more intense anisotropy of the 

selected scatter and hence a more complex function describing that distribution. 

Once the collision type (isotope, energy, and inelastic level) has been fully 

determined through weighted random sampling, a linear interpolation of the coefficients 

from the energy above and below the target energy produces the coefficients used for the 

PDF and the CDF. 
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Cross Section Implementation 

Once a collision location has been determined using mean free path calculations, 

cross sections of all the possible collision types are used to determine the species struck 

and the collision type.  During this weighted random sampling, certain collision types 

can be suppressed, such as absorption or less common interactions like (n,2n) reactions.  

To determine the collision type, two weighted random samples must be executed; the 

first sampling selects the species struck and the second sampling determines the type of 

scattering event (elastic or inelastic) and the inelastic level. 

To determine the species struck, total cross sections for each species in the 

atmosphere, weighted by the atmospheric fraction of each species, need to be considered.  

Additionally, in order to utilize embedded random number generators in the Math 

Kernel Library without additional mathematical operations, the random sample has 

been constructed to utilize random numbers on their intrinsic range, R [0,1)Î . 

The test used to select the struck species is 
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where R is a pseudo-random number, total
is is the total cross section for interaction for 

the ith species in the atmosphere and fi is the fraction of the atmosphere represented by 

the ith species, and n is the total number of species in the atmosphere.  The test begins 

with k=1 and is repeated with the same random number, incrementing k until the test 

returns true or k=n-1.  If the test is true, the kth isotope is struck, and if k=n-1 the nth 

isotope is known to be struck without performing the final test.  To minimize the 

number of arithmetic operations, in successive tests, results from the previous 

summations can be used, as well as ordering the list of species with the highest 

atmospheric concentrations first 

Once the species struck has been determined, the type of scatter (elastic or 

inelastic with level) must be determined.  First, the maximum inelastic level is selected 

by comparing the energy of the incident neutron in the inertial frame of the struck 

nucleus to the excitation energies (Q) of the available inelastic levels.  Any level with a 

Q greater than the incident energy (in the frame of the center of mass of the collision) 

cannot be reached and is therefor excluded.  In a similar manner to equation [3.1], the 

level selection test is 
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where scatter
is is the cross section for scatter and excitation to the ith inelastic level with 

i=0 being elastic, and n is the total number of available inelastic levels based on the Q 

value.  The test begins with k=0 (elastic scatter) and is repeated with the same random 

number, incrementing k until the test returns true or k=n-1.  If the test is true, the 

scatter is the kth inelastic level, and if k=n-1 the scatter takes place at the nth inelastic 

level, the highest level possible for that incident neutron energy without performing the 

final test.  The summations occur during each iteration of the test, but summation 

results from previous iterations can be used to minimize arithmetic operations.  In all 

examined cases, for all energies under 14.5 MeV, the elastic cross section is greatest, and 

hence the most likely scatter is elastic.  In that elastic case, only one test occurs.  Even 

though this test is O(n), functionally it is much faster due to the frequency of elastic 

scatter. 

Unified energy grid 

Since so many cross section lookups are required to fully define one particle’s 

history, including mean free path calculations in air and multiple collision calculations 

as in equations [3.1] and [3.2], a unified energy grid is created prior to running a 

problem set in an effort to speed up individual cross section look ups. 

In a given ENDF cross section file, the energies are not standardized across the 

whole ENDF library, but are based on round numbers (like 1.0e5 eV or 3.5e-6 eV) and 
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on excitation energy levels for the particular species being measured.  Consequently, 

each ENDF cross section file has cross sections for a different set of energies. 

The unified energy grid is a three dimensional matrix; the first dimension is 

energy, the second is the cross section type, and the third is the species or isotope.  

Much like the Legendre coefficient data, the size of two of these three dimensions must 

be determined dynamically, based on the problem definition and the contents of the 

ENDF libraries being used. 

To construct the size of the first dimension, every energy listed in every ENDF 

file for the defined atmosphere is read in and placed in a list.  Duplicates are eliminated 

from the list, and the list is sorted and truncated based on upper and lower energy 

bounds.  This incorporates all the energies of interest for all of the isotopes taken into 

consideration. 

The cross section types included as the second dimension are the cross section for 

elastic scatter, the cross section for total inelastic scatter, and the total cross section for 

interaction.  Finally the third dimension is comprised of all the species included in the 

defined atmosphere. 

Once the dimensions of the grid are determined, the cross sections themselves 

need to be populated into the unified grid.  Some energy / cross section pairs directly 

map to the ENDF files, but some pairs in the grid will not directly map to the provided 
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data and need to be interpolated.  Linear interpolation is used to avoid introducing 

arithmetic precision errors, as multiple linear interpolations are mathematically 

equivalent to a single linear interpolation.  This is not the case with some other 

interpolation methods. 

Once the grid is constructed, look ups into the grid will frequently not land on an 

energy boundary and will require interpolation, also linear.  So, the cross section value 

used for interpolation may be interpolated twice, once when the unified grid is 

populated, and once when a table look up occurs.  Since linear interpolating twice to a 

value is equivalent to linear interpolating once to the same value, no interpolation error 

is introduced. 

Linear Interpolation 

Given a standard linear interpolation of a function f(x) with known values at x0 

and x1, 
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If another interpolated point, x’, is calculated in the same interval, 
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it can be shown that x can be found by interpolating x’ with either x0 or x1. 
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By substituting equation [3.4] into equation [3.5], 

 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0 0
0 0 1 0 0

1 0 0

0 0
0 1 0

1 0 0

0
0 1 0

1 0

'

'

'

'

x x x x
f x f x f x f x f x f x

x x x x

x x x x
f x f x f x f x

x x x x

x x
f x f x f x f x

x x

æ öæ ö æ ö- -÷ç ÷ ÷ç ç÷÷ ÷ç ç ç= + + - - ÷÷ ÷ç ç ç÷÷ ÷ç ÷ ÷ç ç- -÷ç è ø è øè ø
æ öæ ö- -÷ ÷ç ç÷ ÷ç ç= + - ÷ ÷ç ç÷ ÷÷ ÷ç ç- -è øè ø
æ ö- ÷ç ÷ç= + - ÷ç ÷÷ç -è ø

  [3.6] 

equation [3.3] is produced, showing multiple linear interpolations are mathematically 

equivalent to a single linear interpolation. 

Verification Design 

As with most program development efforts, the developed modules are tested 

independently from the larger programming effort, in order to focus the search for 

compilation, run time, and logic errors in the code.  The majority of the verification 

work was performed in Microsoft Visual Studio 2013 [7] and graphical verification was 

performed in Matlab 2014b [8].  
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Anisotropy Testing 

The first question to be addressed with regards to anisotropic behavior of 

neutrons following scattering events is, to what degree is anisotropic behavior present 

even in the simplest of conditions?  With the provided ENDF data, prior to any 

simulation effort, the anisotropic angular distribution for the considered species was 

examined to determine if the anisotropic behavior was evident at all. 

Collision Testing 

With the use of the Watt spectrum for neutrons produced from the fission of U235 

along with the atmospheric concentrations specified for a five species atmosphere (N14, 

N15, O16, O18, and O17), the collision choosing functionality was tested.  This serves not 

only to ensure all possible collision types were represented and functioning correctly, but 

also serves as an indicator of the general likelihood of individual scatter events occurring 

during a more expansive simulation. 

Net Effect of Anisotropy 

Finally, as an examination of the effect of anisotropy of neutron scatter on 

problems of this type, two parameter studies were conducted using HASTE-N-TE, 

incorporating atmospheric species concentrations, weighted scattering occurrence rates, 

and energies generated by a line source.  Both of these studies utilized a flat-earth, 

stationary atmosphere model varying altitude and energy respectively.  
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IV. Results and Analysis 

A Matlab 2014b script was written to construct the PDF from Legendre 

weighting coefficients combined with their associated polynomials and to plot them as in 

figure 3. Because the incident particles here have mass, the energy is in the center of 

mass frame of the collision, and may differ from the energy of the incident neutron in 

the lab reference frame based on the movement of the nucleus being struck.  

Anisotropic Angular Distributions 

Prior to examination of any results from simulations, the first step was to 

examine the anisotropic behavior of neutrons in general, using coefficients directly from 

ENDF, to determine any patterns or common behavior of the angular distributions in 

general.   Note: The areas under different PDFs plotted as in figure 1 are all equal to 1, 

by the normalization of a PDF. However, the areas inside of different PDFs on 

parametric polar plots, as in figure 3 and in this chapter, are not related to 

normalization and can be very different. 

First, the behavior of the angular distribution of a neutron in the exit channel 

following an elastic collision was considered.  The isotope was fixed, and only energy 

was varied.  The first isotope examined in this manner was O16, and energy levels of 1 

MeV, 4 MeV, and 7 MeV are shown in figure 5 below. 
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Figure 5: f (μCM) plotted radially against q(μCM) of Neutrons at 1 MeV, 4 MeV, and 7 

MeV following elastic scattering events with O16.  These energies are measured in the 

reference frame of the center of mass of the collision.  With changing energies of incident 

neutron colliding with the same species in only elastic scattering events, significantly 

different angular distributions result. 

Knowing that isotropic behavior would be displayed as a circle of radius 0.5, 

anisotropic scatter is clearly present, as seen by two distinct lobes in the 1 MeV 

distribution and three distinct lobes in the 4 MeV and 7 MeV distributions.  The 

changing number of lobes shows the behavior is not just scaled based on energy, but can 

have distinct features appear and disappear along a given energy range.  Another 

important feature to note is that at 1 MeV, there is no forward scatter or backscatter 

bias, but this is not true at higher energies.  
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The same plot in Figure 5 was repeated in Figure 6, only changing the species 

struck to N14.  Only elastic scatter is represented, and 1 MeV, 4 MeV, and 7 MeV are 

represented. 

 

Figure 6: f (μCM) plotted radially against q(μCM) of Neutrons at 1 MeV, 4 MeV, and 7 

MeV following elastic scattering events with N14.  These energies are measured in the 

reference frame of the center of mass of the collision.  With changing energies of incident 

neutron colliding with the same species in only elastic scattering events, significantly 

different angular distributions result. 

Similar to Figure 5, the 1 MeV distribution shows no forward or backscatter bias, 

but the forward scatter bias is clearly evident at higher energies.  Again, the lobes of the 

distributions appear to present themselves and disappear as energy changes. 
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Once it was clear that anisotropic scatter is present across energy levels, inelastic 

level scatter was examined.  Since it is now established that the anisotropic behavior 

can vary with energy, the next task would be to determine if anisotropic behavior varies 

with the level of an inelastic scatter. 

 

Figure 7: f (μCM) plotted radially against q(μCM) of 8 MeV Neutrons following 2nd, 4th, and 

6th level inelastic scattering events with O18.  These energies are measured in the reference 

frame of the center of mass of the collision.  With the same energy of incident neutron 

colliding with the same species, based on the inelastic level, significantly different angular 

distributions result. 

Figure 7 shows the angular distribution for varying levels of anisotropy across 

inelastic levels, where the angular distributions from three inelastic level scatters (2nd, 
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4th, and 6th) from 8 MeV neutrons are incident to O18.  Three distinct scattering 

behaviors are observed.  First, in the 2nd level inelastic scatter four lobes are present, 

indicating a forward scatter, backscatter, and direct side scatter bias with zeros between 

those lobes.  Next, in the 4th level inelastic scatter a slight forward scatter and 

backscatter bias is observed, with smooth transitions throughout.  Finally, in the 6th 

level inelastic scatter, a slight bias to side scatter is observed, again with smooth 

transitions. 

Figures 5, 6 and 7 are not present to show patterns, or to draw definitive 

conclusions, but they do clearly show that anisotropic behavior is present, and that the 

behavior can vary across any of the parameters of the collision, namely species struck, 

inelastic level, and incident neutron energy.  However, there is no expectation that a 

clear pattern would emerge.  If there was a distinct pattern, a closed-form solution 

would likely be common practice for determining neutron scatter behavior. 

Instead, the conclusion that can be drawn is that anisotropic behavior is clearly 

present in neutron scatter events, and bears investigation, as it may have significant 

effect on certain simulations related to long-distance, point source problems. 

Weighted Random Choosing 

Next, in order to verify both the cross section method for choosing collision types 

and the Watt spectrum for determining incident neutron energies, 100 million energies 
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were drawn from the Watt spectrum, and collisions types were tabulated using cross 

sections and atmospheric concentrations. 

During this process of weighted random sampling, individual neutrons with their 

associated energies were examined, and virtually every possible collision type and species 

was encountered, ensuring that the chance of each type of collision was appropriately 

weighted as shown in Equation [3.1] and in Equation [3.2]. 
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Table 1: Listing of Collisions Produced by 108 Neutrons Drawn from the Watt Spectrum.  

Atmospheric species fractions along with cross sections were used in weighting the 

collisions. 

Level N14 N15 O16 O18 O17 

0 72886617 387202 25451238 7492 5388 

1 213075 1142 13427 1529 629 

2 439105 426 89258 186 41 

3 76752 298 18133 132 77 

4 165195 178 8093 331 27 

5 43304 117 2775 144 11 

6 74840 128 576 69 34 

7 24413 21 484 76 12 

8 11900 20 597 25 17 

9 31891 5 307 64 0 

10 8992 14 354 59 9 

11 5236 21 295 20 3 

12 9230 6 198 33 1 

13 2761 7 243 31 2 

14 251 5 9 3 4 

15 181 7 4 8 2 

16 227 4 10 2 2 

17 1869 2 2 2 2 

18 2817 5 2 2 3 

19 2865 4 0 5 1 

20 1836 0 0 6 2 

21 728 0 0 3 1 

22 1182 0 0 7 6 

23 898 0 0 5 0 

24 658 0 0 2 0 

25 470 0 0 1 1 

26 274 0 0 2 0 

27 180 0 0 3 0 

28 114 0 0 1 2 

29 0 0 0 2 0 

30 0 0 0 0 0 
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Table 1 functions as a display of the collision choosing portion of the module.  

Several elements of the table are present as expected, such as the majority of collisions 

are incident to N14, the most plentiful species in the defined atmosphere.  Additionally, 

the majority of the collisions are elastic (98.77%), represented by the 0th level. 

The Effect of Anisotropy 

With the individual elements of the module functioning in accordance with 

theory, the underlying question is whether anisotropic behavior is worth the 

computational cost to be included in certain HASTE-N problem runs, and if so, what 

level of precision is effected by the inclusion of anisotropic scatter.  The first part of this 

question is addressed here, and the latter will become apparent as the HASTE-N 

software package goes through further testing and development. 

First, given the reasonable set of parameters for a sample problem listed in Table 

2 (coefficients for the Watt spectrum representing neutrons emitted from the fission of 

U235, and a five species atmosphere consisting of two isotopes of nitrogen and three 

isotopes of oxygen with associated concentrations), 108 collisions were selected by 

random sampling producing the collisions listed in Table 1.  
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Table 2: Problem Parameters 

Atmospheric Fractions  Watt Spectrum Coefficients 

Nitrogen 0.78084  a 0.7   

Oxygen 0.20946  b 1  

      

Isotopic Concentrations     

N14 0.99636     

N15 0.00364     

O16 0.99757     

O18 0.00205     

O17 0.00038     

 

Next, the energy of each incident neutron causing each of the 108 events was used 

to determine the species struck and the inelastic level.  This information was then used 

to interpolate tabulated Legendre coefficients.  These 108 sets of coefficients were 

averaged, producing an average PDF of first scatters, ( )f m , for the problem as a whole, 

representing the overall scatter angle distribution for the problem parameters, taking 

into account weighting from collision type, incident energy, and species struck.  This 

overall ( )f m  is graphed in Figure 8 below. 
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Figure 8: f (μCM) plotted radially against q(μCM) of 108 neutrons drawn from the Watt 

spectrum for U235 fission incident to an atmosphere as specified in Table 2.  The 

anisotropic nature of the angular distribution PDF is apparent, with a significant forward 

bias. 

The overall ( )f m  does not have any distinct lobes or sharp features, as it is 

averaged over 108 different function estimators.  Readily apparent is a forward bias, 

with a distinct bias for deflection angles less than 30 degrees.  This shows that the 

problem set as a whole has significant anisotropic behavior and should be considered in 

problems with parameters similar to those in Table 2. 
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Because lower energies are shown to show less forward bias, as seen in Figure 5 

and Figure 6, the same averaging was examined excluding lower energies.  Considering 

this anisotropic behavior, excluding lower energies could be useful if a given detection 

system has a lower energy threshold, or if due to the geometry of the problem, which 

has not been considered here, lower energy neutrons need not be considered. 

 

Figure 9: f (μCM) plotted radially against q(μCM) in varying energy ranges of 108 neutrons 

drawn from the Watt spectrum for U235 fission incident to an atmosphere as specified in 

Table 2.  Distributions shown suppress lower energies.  When higher energies are 
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displayed absent lower energies the foreword bias is more apparent, showing the forward 

bias comes from the higher energy neutrons more than the lower energy neutrons. 

When the same 108 neutrons are considered, masking out lower energies, the 

foreword bias becomes more apparent.  In fact, as a larger range of low energies is 

masked, as in Figure 9, bias is more prominent. 

 This leads to the conclusion that, on average, the higher the energy, the greater 

the apparent magnitude of the forward bias of the anisotropic scatter.  Based on the 

design of the problem, including geometry and detector sensitivity, this further increased 

anisotropy of scatter angle could have an even greater effect on the fidelity of the model.  

Altitude Parameter Study 

 Through the use of HASTE-N-TE, a study varying altitude while examining 

anisotropy was conducted.  HASTE-N-TE was configured to utilize a 14.06 MeV 

isotropic line source, forcing a leakage-suppressed first elastic scatter only, and then 

populating energy-time bins through the use of a point estimator. 

 The atmosphere used in the study is of uniform density and is composed of 

isotopic concentrations listed in Table 2 and stretches from 0 to 86 km above the earth 

with vacuum above.  The atmosphere is 1-D slab geometry, above a flat earth.  The 

detector was placed at 30,000 km and the source location was varied in 5 km increments 

from 5 km to 85 km.  Using these parameters, two runs of 108 particles at each altitude 
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were simulated, the first run using isotropic scatter, then the second using anisotropic 

scatter as determined by the scattering module. 

 Prior to examining any results, knowing the line source is 14.06 MeV and that 

nitrogen-14 is the most common species in the atmosphere, the anisotropic behavior of 

14 MeV neutrons elastically scattered off nitrogen-14 was examined and is displayed in 

Figures 10 and 11 below. 

 

Figure 10: f (μCM) plotted radially against q(μCM) of 14 MeV neutrons following elastic 

scattering events with N14 including detail of side and backscatter regions.  This 

distribution is measured in the reference frame of the center of mass of the collision and 

generated directly from ENDF coefficients.  Scaled to arbitrary units of intensity. 
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Figure 11: f (μCM) plotted against μCM of 14 MeV neutrons following elastic scattering 

events with N14, units of μ vs. arbitrary intensity units of the generated PDF, f(μ).  This 

distribution is measured in the reference frame of the center of mass of the collision and 

generated directly from ENDF coefficients. 

 Examining Figures 10 and 11, a forward positive bias presents itself at scatter 

angles less than 27° with a negative bias present for side and back scatter regions.  The 

uniform intensity of 0.5 representing isotropic, the point where the forward bias end can 

be determined by setting f(μ) equal to 0.5. 
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 Even though the lobes representing side scatter shown in Figure 10 are 

significantly less than isotropic, it should be noted that the center of a lobe in the polar 

plot of the distribution can be mathematically located by setting the derivative of f(μ) 

equal to zero. 

 
'( ) 0

cos(85 ) 0.087

f m
m

=
=  =

. [4.2] 

 In order to examine the time-energy bins from each of the runs of this study, to 

best measure the relative effect of anisotropy, the time and energy dimensions were 

examined separately.  First, neutron counts in time-integrated energy bins were plotted 

at varying altitudes, then neutron counts in energy-integrated time bins were plotted at 

the same varying altitudes.  Collapsing these dimensions allows a good display of the 

relative difference of anisotropic scatter as compared to isotropic scatter in the time and 

energy dimensions. 
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Time-Integrated Energy Bins 

 

Figure 12: Energy bin neutron counts vs. relative error over five source altitudes.  

Relative error is calculated with anisotropic treated as the true value and isotropic 

treated as the measured value. 

 The relative error between neutron counts in isotropic and anisotropic time-

integrated energy bins, 
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 as shown in Figure 12, has several distinct features that are directly linked to 

anisotropic scatter behavior. Thus, where the relative error is positive, a calculation 

using isotropic scatter in the CM frame overestimates the result of a calculation that 

uses the ENDF anisotropic scatter in the CM frame. 

 First, in a direct backscatter collision event, where the neutron deposits the 

maximum amount of energy in the atom, and has minimal exit channel energy, the 

isotropic scatter model overestimates counts by nearly 0.24%.  This occurs where the 

difference between the isotropic distribution and the anisotropic distribution of nitrogen-

14 diverge the most, at a direct backscatter. 

 The maximum energy loss in a collision, lossE E E¢D = - , for a 14 MeV neutron, 

14 MeVE ¢ = , is  

 
( )

( )( )( )( )
( )

max 2 2
loss

4 1 144
14 MeV 3.5 MeV

1 14

n a

n a

m m
E E

m m
¢D = = »

+ +
, [4.4] 

so that the minimum energy of the neutron after the backscatter 1cmm =- , is 

 min max
loss

E = 14 MeV 10.5 MeVE-D » . [4.5] 
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This is seen in Figure 12.  It should be noted that in equation [4.4] the change in 

reference frame is not accounted for, as exit channel energy remains in the center of 

mass frame of the collision in this study. 

 Second, an analogous and opposite behavior presents itself in the region of 

forward scatter, where energy transfer is minimal, and exit channel energy is near 14 

MeV.  Here, an underestimate by isotropic scatter is evident, a result of the distinct 

forward bias of nitrogen-14 anisotropic scatter in the forward region, as seen in Figure 

10. 

 The dip in the center of the graph in Figure 12 is a combination of both the 

design parameters of the simulation, and of the sideways scatter bias of oxygen-16, the 

second most common species in the defined atmosphere.  Here, due to the 1-D slab 

geometry and flat earth model used, some neutrons travel nearly parallel to the top of 

the atmosphere for a long distance before scattering, then, the point estimator only 

attenuates the neutron slightly before it exits the atmosphere and is tallied.  This is 

more pronounced at higher source elevations, as the source is closer to the top of the 

defined atmosphere.  Oxygen-16 exhibits an elastic side scatter bias at higher energies, 

which is why the isotropic scatter model is an underestimate. 

 At the highest source elevation, 85 km, some noise is present at the higher energy 

bins, or the bins populated by forward scatter events because the scatter is forced to 



48 

 

occur in a small amount of the atmosphere, and when assigned the correspondingly low 

weight using Monte-Carlo methods, produces poor counting statistics. 

Energy-Integrated Time Bins 

 

Figure 13: Time bins neutron counts vs. relative error over five source altitudes.  Relative 

error is calculated with anisotropic treated as the true value and isotropic treated as the 

measured value. 

Now, examining the same time-energy bin relative error data as in Figure 12, but 

with energy-integrated energy bins shown in Figure 13, several additional features can 
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be noted.  First, the relative error is zero in figure 13, between 0.625 and 0.64 seconds 

depending on source altitude.  This corresponds to a scattering angle of 27°.  At this 

angle, the anisotropic angular distribution for nitrogen-14 intersects with the isotropic 

distribution case, as seen in Figure 10.  This behavior is expected, at the angle where an 

anisotropic scatter distribution matches the value of an isotropic distribution the error 

between the two would be zero, and the expected difference of the time-energy bins 

populated by that particular scatter should also be near zero.   

Second, at ~0.66 seconds, a significant peak in the error is present, getting larger 

at higher source altitudes.  This phenomena is a direct result of the negative bias 

toward backscatter of nitrogen-14.  The isotropic scatter model significantly 

overestimates the weight of a particle going down into the atmosphere from the source 

then backscattering to the detector.  It follows that, for a higher source location, there is 

more atmosphere to travel through, and hence the collision is given a higher weight, 

leading to increased relative error with increasing source altitudes.  This leads to a 

maximum of 0.23% relative error. 

Finally, at times past 0.7 seconds, a significant increase in noise is present and is 

not consistent with increasing altitudes.  This is primarily an artifact of the 1-D slab 

geometry combined with the backscatter mechanics of nitrogen-14 and oxygen-16. 

One way to achieve a flight time of 0.75 seconds is as follows, 
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where d1 is the distance traveled prior to the scatter, and d2 is the distance between the 

scatter and the detector.  Here, the neutron travels nearly parallel to the flat earth for 

1446 km and then up to the detector.  This is only possible with a 1-D slab geometry 

flat earth model.  Since scattering events similar to the example have an extremely low 

weight due to the long distance traveled within the atmosphere, they produce poor 

counting statistics, hence the noise. 

 The noise, however, is not consistently positive or negative relative error.  This is 

as a result of the species struck.  Nitrogen-14, the most common species struck in the 

atmosphere, has a negative side-scatter bias and oxygen-16, the second most common 

species, has a positive side-scatter bias.  This, combined with poor counting statistics 

means single events have a significant effect on the noise depending on the species 

struck, nitrogen-14 showing isotropic producing an overestimate, and oxygen-16 

producing an underestimate for the scattering events that populate time bins in this 

region. 
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Energy Parameter Study 

 Through the use of HASTE-N-TE, a study varying energy while examining 

anisotropy was conducted.  HASTE-N-TE was configured to utilize 11 isotropic line 

source energies ranging from 1 MeV to 14 MeV, forcing a leakage-suppressed first elastic 

scatter only, and then populating energy-time bins through the use of a point estimator. 

 The atmosphere used in the study is of uniform density and is composed of 

isotopic concentrations listed in table 2 and stretches from 0 to 86 km above the earth 

with vacuum above.  The atmosphere is 1-D slab geometry, above a flat earth.  This 

configuration is identical to that used in the altitude parameter study. 

The detector was placed at 30,000 km and the source location was fixed at 43 

km, the center of the defined atmosphere.  Using these parameters, two runs of 108 

particles at each energy were simulated, the first run using isotropic scatter, then the 

second using anisotropic scatter as determined by the scattering module. 

Since flight times vary both with the scatter mechanics and the energy of the line 

source, the results of this study are best viewed in the relative error of time-integrated 

energy bins.  This allows analysis of the change in the shape of the relative error vs. 

energy plot shown in Figure 14 as incident energy varies.  
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Figure 14: Energy vs. relative error, energy varying from 4 MeV to 14 MeV.  Relative 

error is calculated with anisotropic treated as the correct value and isotropic treated as 

the approximate value. 

 In the energy range depicted in Figure 14, the shape of each relative error vs. 

energy plot is similar to that seen in Figure 12, with the same interpretation for the 

features in each plot as described in the altitude study.  Primarily, this is evidence that 

the behavior of the relative error of time-integrated energy bins is consistent across an 

energy range, not just at 14.06 MeV as analyzed in the altitude study. 

 Additionally, across the energy range of 4 MeV to 14 MeV as displayed in Figure 

14, the relative error increases linearly with energy.  This behavior of the relative error 
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can be used as a determining factor when deciding to apply anisotropy to an energy 

range, based on the noise level of a particular simulation or the precision desired. 

 At energies beneath 4 MeV, however, the shape of the relative error plot begins 

to change as seen in Figure 15.  The maximal error shifts from the left of each plot, 

meaning the region of energy bins populated by backscatters, to the right side of the 

plots, the region of energy bins populated by the forward scatters. 

 

Figure 15: Energy vs. relative error, energy varying from 1 MeV to 2 MeV.  Relative 

error is calculated with anisotropic treated as the correct value and isotropic treated as 

the approximate value. 

 Due to the decreasing relative error in the 1 MeV to 2 MeV energy range 

combined with the effect of anisotropy being reduced for this energy range as seen in 
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Figure 6, the artifacts of the problem parameters may eclipse any conclusions that could 

be drawn from this behavior.  Higher fidelity simulation in HASTE-N focused on this 

energy range could allow more definitive conclusions regarding the behavior of the 

relative error in this energy region. 

 

Figure 16: Probability density functions for elastic scattering of nitrogen-14, 1 MeV to 2 

MeV.  Plot is of μ vs. normalized intensity of each PDF.  Legendre coefficients are 

extracted from ENDF without interpolation. 

 The behavior of the angular distribution probability density functions for 

nitrogen-14, as shown in Figure 16, shows oscillations in the behavior of the PDFs that 

are not easily explained.  This does not clearly explain the behavior of the relative error 

of energy bins in this region, leading to the supposition that the shift in the shape of the 
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relative error plots in Figure 15 is not related to anisotropic behavior changes, but from 

a different aspect of the simulation.  
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V. Conclusion 

Anisotropy is present in the angular distributions of neutrons departing from a 

nuclear scattering event.  This anisotropy cannot be defined in a closed-form solution as 

in the Klien-Nishina distribution for gamma rays following scattering events, nor is the 

degree and behavior of anisotropy only dependent on the incident energy of the particle.  

In fact, for neutrons leaving a scattering event, the anisotropic behavior of the angular 

distribution is dependent on the incident energy of the neutron, the type of scatter 

being elastic or inelastic along with the inelastic level, and the species struck.  

Additionally, this dependence cannot be predicted using a closed form solution, and 

polynomial functions have been developed and are tabulated in ENDF based on 

experimental data. 

  The function used to describe the estimator of the PDF of the angular 

distribution for a given set of conditions is constructed of weighted Legendre 

polynomials.  In general, the larger the magnitude of the weighting coefficients, the 

more severe the anisotropy.  Unfortunately the shape of the angular distribution is not 

predictable based on any consistent factor, and experimental data must be used to 

construct angular distributions for use in simulation models. 

 Amidst all of the other computational demanding factors of a Monte Carlo 

neutron transport code including problem geometry, fidelity demands, cross section 

lookups, and others, inclusion of anisotropic scattering behavior requires examination to 
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determine if the increase in computational cost adds appreciably to the fidelity of the 

answer, and to what degree fidelity is increased. 

 A spectrum of U235 fission neutrons, as generated by the Watt spectrum, was 

examined as it collided with species in a nitrogen-oxygen atmosphere with normal 

natural concentrations of nitrogen and oxygen isotopes.  In a stochastic manner, 108 

collision samples were taken, utilizing cross section-based weighting for random 

sampling of collision types and cross section weighting along with concentration 

weighting to determine the species struck.  The collective anisotropy of the resultant 

angular distribution was apparent, with a definite average forward bias across the 

spectrum and a bias toward scattering angles less than 30 degrees. 

 Additionally, when lower energies are eliminated from consideration, the forward 

bias increases.  This leads to the conclusion that, on average, the higher the energy, the 

greater the apparent magnitude of the forward bias of the anisotropic scatter. This is 

worth considering when undertaking simulation design utilizing detectors with specified 

sensitivity ranges. 

 Using 1-D slab geometry, two studies were conducted exploring the relative effect 

of anisotropic scatter as compared to isotropic scatter in the center of mass reference 

frame.  The maximum relative error of 0.24% was observed in the energy dimension and 

0.23% in the time dimension.  This can serve as a first approximation for more complex 

problem geometries and more robust scatter mechanics.  In short, if precision is required 
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past the second decimal place in long-distance high-altitude transport utilizing isotropic 

scatter in the center of mass reference frame, anisotropy in the center of mass reference 

frame deserves consideration. 

Further Work 

 Additional examination regarding the specific nature of the anisotropy is 

suggested, particularly within a simulation.  Once HASTE-N is able to function with 

and without implementation on anisotropic scatter, detailed parameter studies should be 

conducted to determine the gain in fidelity realized by the inclusion of anisotropic 

neutron scatter. 

  



59 

 

Bibliography 

 

[1] Mathews, Kirk A. "HASTE-N High Altitude / Space Transport Estimator for Neutrons: 

A Monte Carlo Method for Neutron Transport Within and Above the Atmosphere to a 

Satellite-Based Detector." Unpublished, January 2015  

[2] Lewis, E.E. and Miller, W.F. Jr. Computational Methods of Neutron Transport. La 

Grange Park, IL: American Nuclear Society, 1993.  

[3] Mathews, Kirk A. Professor of Nuclear Engineering, School of Engineering and 

Management, Air Force Institute of Technology, Wright-Patterson AFB OH, Personal 

Correspondance, Fall Quarter 2014.  

[4] Lawrence Livermore National Laboratory. Sampling ENDL Watt Fission Spectra. 

UCRL-TR-203351. Livermore CA: LLNL, 1 April 2004  

[5] Lawrence Livermore National Laboratory, The LLL Evaluated Nuclear Data Library 

(ENDL): Evaluation Techniques, Reaction Index, and Description of Individual 

Evaluations. UCRL-50400, Vol. 15, Part A, Livermore, CA: LLNL, September 1975  

[6] Brookhaven National Labratory, ENDF-6 Formats Manual: Data Formats and 

Procedures for the Evaluated Nuclear Data Files ENDF/B-VI and ENDF/B-VII. BNL-

90365-2009, Revision 2. Upton, NY: BNL, December 2011  

[7] Microsoft Visual Studio Professional 2013, Version 12.0.30501.00 Update 2. Computer 

Software. Microsoft Corporation, Redmond, WA, 2013.  

[8] MatLab 2014b, Version 8.4.0.150421. Computer Software. The Mathworks Inc, Natick 

MA, 2015.  

 

 



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

26 Mar 2015 Master's Thesis June 2013 - March 2015

The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

McIntee, Nicholas, J, Major, United States Army

Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way 
Wright-Patterson AFB  OH  45433-7765

AFIT-ENP-MS-15-M-085

Air Force Technical Applications Center                                  
Dr. David Walter Gerts 
10989 South Patrick Dr. 
Patrick AFB, FL  32925 
david.gerts.2@us.af.mil

AFTAC

Distribution Statement A. Approved for Public Release; Distribution Unlimited.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Anisotropy is present in the angular distributions of neutrons departing from a nuclear scattering event. This anisotropy cannot be 
defined in a closed-form solution, and it is dependent on the incident neutron energy, elastic or inelastic scatter, along with the 
inelastic level, and the species struck.  The underlying question is, if anisotropic behavior is worth the computational cost to be 
included in certain simulations, and if so, what level of precision is effected by the inclusion of anisotropic scatter. 
A Watt spectrum of U235 fission neutrons was examined as it collided with species in a nitrogen-oxygen atmosphere. The collective 
anisotropy of the resultant angular distribution was apparent, with a definite average forward bias across the spectrum and a bias 
toward scattering angles less than 30 degrees.  Additionally, with the elimination of lower energies, on average, the higher the 
energy, the greater the apparent magnitude of the forward bias of the anisotropic scatter. 
Using 1-D slab geometry, two studies exploring the relative effect of anisotropy were conducted. The maximum relative error of 
0.24% was observed in energy and 0.23% in time. In short, if precision is required past the second decimal place in long-distance 
high-altitude transport, anisotropy deserves consideration. 
Neutron Scatter, Anisotropy, Atmospheric Transport, Monte-Carlo

U U U UU 73

Dr. Kirk A. Mathews

(937) 255-3636 x4508    kirk.mathews@afit.edu

Reset




